

Non-Aqueous Solvents for Post-Combustion CO₂ Capture

RTI International Marty Lail, Kelly Amato, Nandita Akunuri, Markus Lesemann, <u>Luke Coleman</u>

BASF <u>Sean Rigby</u>, Karsten Bartling, Todd Spengeman, Torsten Katz

July 11, 2012

Copyright © 2012 RTI. All rights reserved

Project Overview

Project Objective

- Develop non-aqueous solvent and process for CO₂ capture that substantially reduces the parasitic energy load and corresponding ICOE for post-combustion CO₂ capture
- Transition process from TRL-3 to TRL- 5

Project Details

Project Number: DE-AR0000093 Funding: Total: \$2,750,000

- ARPA-E: \$2,200,000
- BASF: \$500,000
- RTI: \$50,000

Performance Period: July $2010 \rightarrow$ June 2013

Project Team

IMPACCT Program

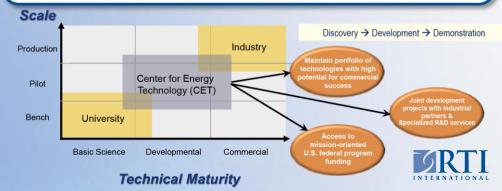
SRTI -

D - BASF

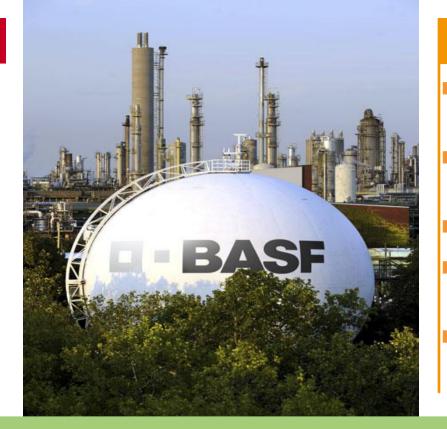
The Chemical Company

- Inventor of novel, non-aqueous CO₂ solvent chemistry
- Novel solvent synthesis and formulation, solvent screening and evaluation, and process design and simulation efforts
- Global leader in gas treatment solutions
- Extensive experience in the design, engineering, and servicing of acid-gas removal systems
- Guide solvent evaluation and process design to focus efforts on solving technical challenges to commercialization

Center for Energy Technology


RTI's Center for Energy Technology

RTI's Johnson Science and Engineering Building Home of RTI's Center for Energy Technology


Objective: Development of new energy technologies from laboratory bench to full-scale commercialization Program Areas

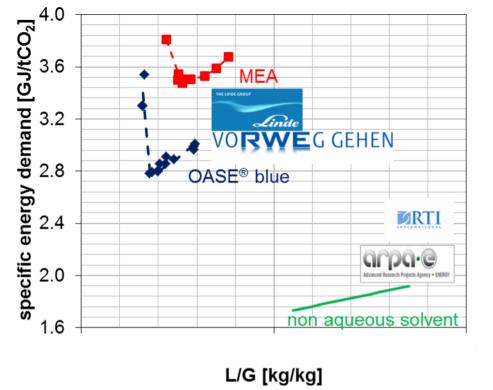
- Advanced Gasification
- Syngas Conversion and Clean Fuels
- CO₂ Capture and Conversion
- Biomass Conversion and Biofuels
- Water Treatment
- Shale Gas

BASF

- The world's leading chemical company
- Sales 2011: €73,497 million
- Income from operations (EBIT) 2011: €8,586 million
- Employees at year-end 2011: 111,141

Gas Treatment

- Leading provider of gas treatment solutions
- Customer focused solution provider
- +300 industry references
- Innovation driven business unit


D • **BASF**

The Chemical Company

Gas treating excellence

BASF – The Chemical Company

MEA: well established technology **OASE[®] blue:** ready for commercial scale Non aqueous solvent:

lab phase

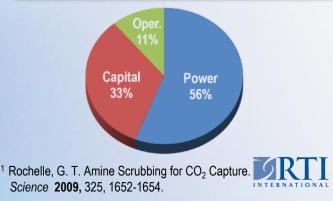
Post-Combustion CO₂ Capture Process

Three Generations of Solvents

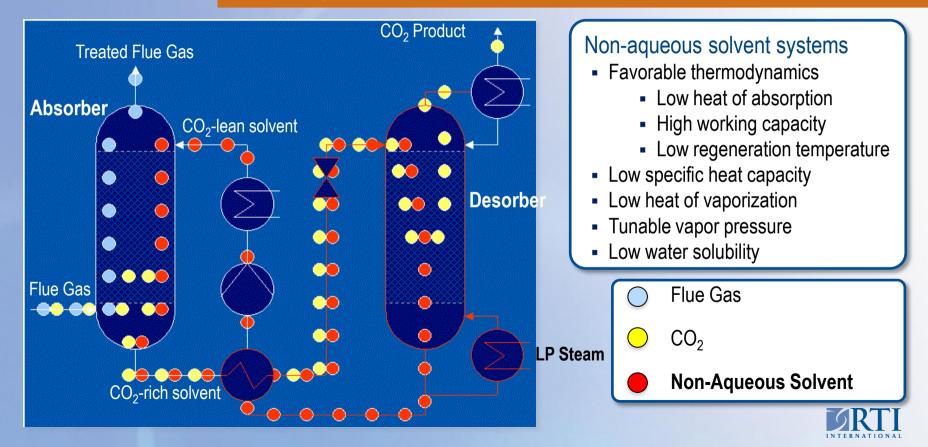
The Chemical Company

R&D Opportunity

Breakdown of the Thermal Regeneration Energy Load


$$\mathbf{q}_{R} = \begin{bmatrix} \frac{C_{P}(T_{R} - T_{F})}{\Delta \alpha} \cdot \frac{M_{sol}}{M_{CO_{2}}} \cdot \frac{1}{x_{sol}} \end{bmatrix} + \begin{bmatrix} \Delta H_{V,H_{2}O} \cdot \frac{p_{H_{2}O}}{p_{CO_{2}}} \cdot \frac{1}{M_{CO_{2}}} \end{bmatrix} + \begin{bmatrix} \frac{\Delta H_{abs,CO_{2}}}{M_{CO_{2}}} \end{bmatrix}$$
Reboiler Sensible Heat Heat of Vaporization Heat of Absorption

Solvent	C _p [J/g K]	∆h _{abs} [kJ/mol]	∆h _{vap} [kJ/mol]	X _{solv} [mol solv./ mol sol'n]	$\Delta \alpha$ [mol CO ₂ / mol solv.]	Reboiler Duty [GJ/tonne CO ₂]
MEA (30%)	3.8	85	40	0.11	0.34	3.22
Lower Energy Solvent System	↓	₽	↓	1		₽


Process capable of achieving these criteria will have a lower energy penalty than SOTA processes

Path to Reducing ICOE and Cost of CO_2 Avoided

- Primarily focus on reducing energy consumption – reboiler duty
- Reduce capital expenditure
 - Simplify process arrangement
 - Materials of construction
- Limit operating cost increase

Non-Aqueous Solvents and Envisioned Process

Technical Challenges for Non-Aqueous Solvents

Development plan is focused to

- identify promising solvent formulations that reduce reboiler heat duty and directly address these technical challenges
- demonstrate superior performance
- rapidly transition from the lab to the field

Undesirable reactions with water

Competitive reaction with water can lead to more stable bicarbonates

- Accumulation of water from flue gas in solvent Water can be stripped from the flue gas and accumulate in the capture process
- Solids formation in rich solvent

Formation of insoluble salts or gels at high CO₂ loadings

Viscosity of solvent

Affects rate of CO₂ capture and column size

Foaming

Affects column performance

- Solvent cost and availability
 - Exotic components can be expensive and may not be readily available for large-scale applications
- Emissions in process water and treated flue gas Solvents must not be hazardous

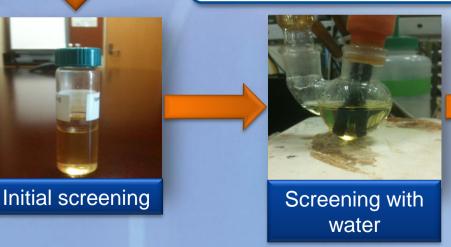
Technology Development Plan – Year 1 Efforts

	Previous Work			Current	Project	Future Development			
Yr	2009-10			201	0-13	2014-15 2		2016-18	2019+
TRL	1	2	3	4	5	6	7	8	9
	Proof of Concept/Feasibility								

Laboratory Validation

- Comprehensive solvent screening to identify promising solvent systems
- Process modeling to evaluate novel process configurations and integration strategies
- Preliminary technical and economic assessment to compare cost and performance to conventional solvent systems

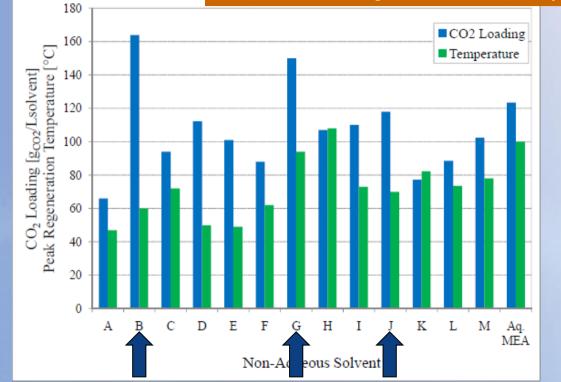
Year 1 Major Milestones and Targets


- Identify at least 1 promising solvent system meeting all performance criteria for bench-scale testing in Y2 & Y3
- Preliminary estimates of parasitic power load and COE completed.
 - Reboiler Duty: < 2.5 GJ/tonne CO₂
 - % Increase in COE < 75%

Process for Identification of Promising Solvent Formulations

Formulation conception

- A. Propose solvent formulations meeting internal requirements
- B. Screen formulations for CO₂ loading and regeneration temperature
- C. Determine impact of water and water solubility
- D. Measure thermodynamic properties- VLE & Δ HR
- E. Measure physical properties of lean and rich solutions viscosity and foaming
- F. Evaluate long-term stability using high-fidelity FG including H₂O, O₂, and SO₂



Long-term testing & measurement of physical and thermodynamic properties

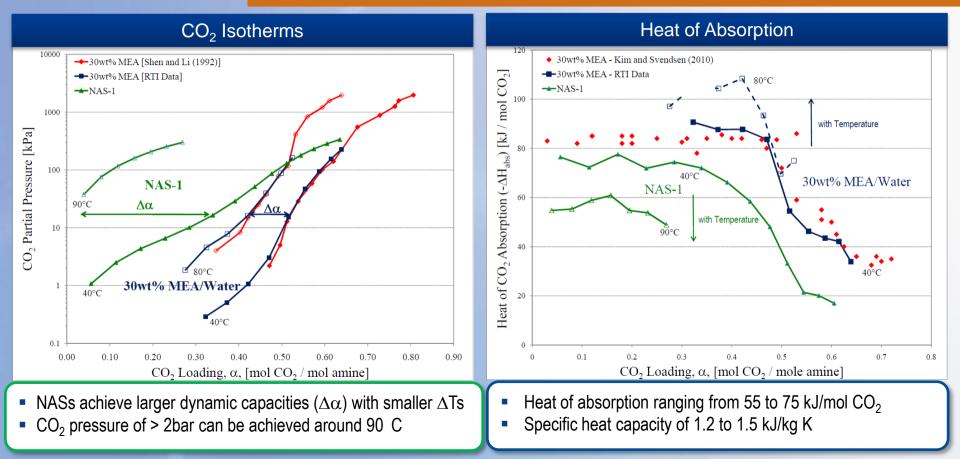
Center for Energy Technology

2012 NETL CO₂ Capture Technology Meeting

Initial Screening of Candidate Systems

- Screened a broad array of nonaqueous solvent families
- Low regeneration temperatures 45 to 110°C
- High CO₂ loading capacities 60 to 163 g CO₂ / L_{solvent}

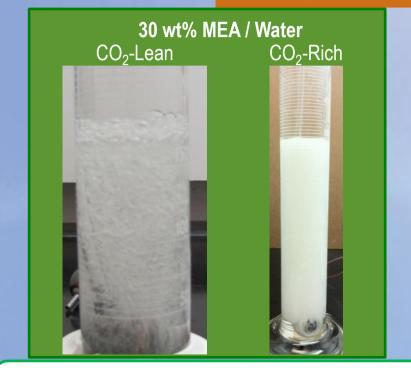
Identified promising candidates with higher loadings and lower regeneration temperatures than conventional aqueous-amine solvents


Screening with Water

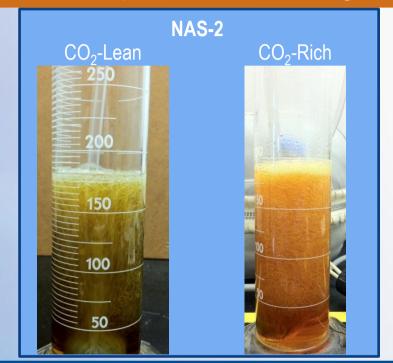
- Eliminated numerous solvent formulation due to critical issues related to water
- Narrowed promising candidate solvent systems that maintain desired performance in the presence of water

Measurement of Thermodynamic Properties

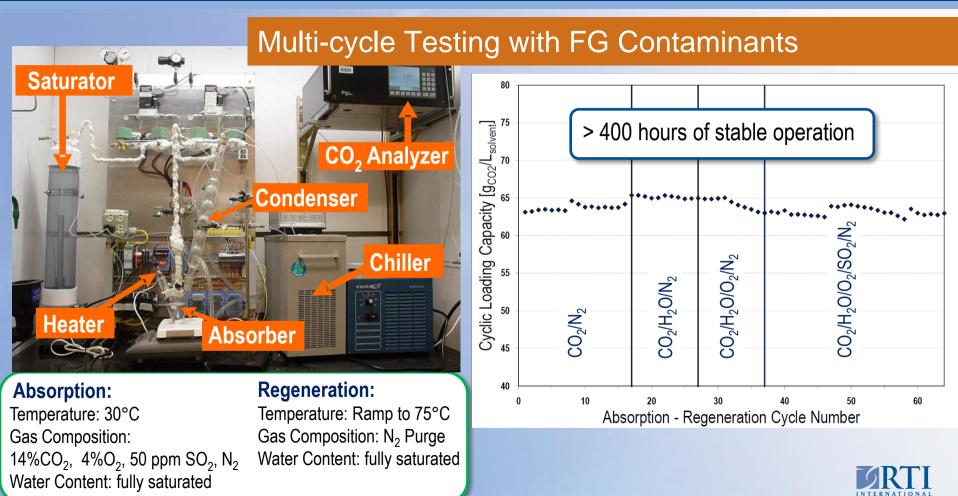
Measurement of Physical Properties - Viscosity

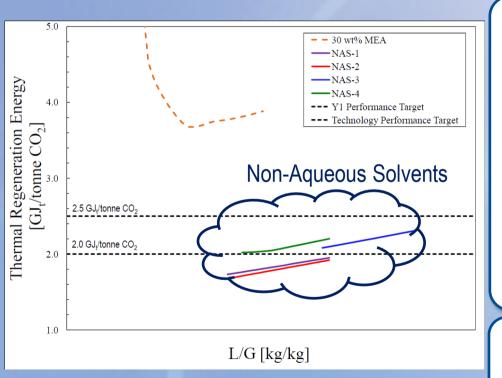

- Viscosity measured using Brookfield DVI-Plus viscometer
- Viscosity measured for CO₂-lean and CO₂-rich solvents at absorption (40°C) and regeneration (80°C) temperatures

Measured Viscosity								
Sample Name	Viscosity [cP]	Temp [C]						
	4.5	40						
NAS-1, CO ₂ -Lean	1.6	80						
NAS-1, CO ₂ -Rich	20.7	40						
	7.2	40						
NAS-2, CO ₂ -Lean	2.5	80						
NAS-2, CO ₂ -Rich	27.1	40						


- 30 wt% MEA is reported to be 1.7 cP (lean) and 2.7 cP (rich) at 40°C¹
- Non-aqueous solvents have very reasonable viscosities and can utilize conventional gas absorption equipment

¹ Amundsen, T. G. CO₂ Absorption in Alkaline . MSc. Thesis. Telemark University College 2008.


Measurement of Physical Properties – Foaming


- Foaming issues observed without addition of antifoaming agents
- Failed test by expanding > 3x to overflow cylinder

- No foaming issues observed for non-aqueous solvents
- Very little retention of gas in solvent

Estimate of Reboiler Heat Duty using Short-cut Methoda

^aNotz et al. A short-cut method for assessing absorbents for post-combustion carbon dioxide capture. *Int. J. Greenhouse Gas Control* **2011**, 5, 3 413-421

Basis:

- Solvent parameters
 - Measured thermodynamic data for NASs and MEA /water
- Process parameters
 - Flue Gas Composition (mole fraction)
 - N₂: 69.61; O₂: 3.35; H₂O: 13.04; CO₂: 14.00
 - Percent CO₂ captured: 90%
 - Pressure
 - Absorber: 1013 mbar; Desorber: 2000 mbar
 - Temperature
 - Absorber: 40 °C; Desorber: 120 °C (MEA); 90°C (NAS)
 - Crossover exchanger approach temperature: 10 °C
- Several candidates have been identified that have potential to achieve regeneration energies < 2.0 GJ_t / tonne CO₂
- Promising candidates to be evaluated in the bench-scale unit in Years 2 & 3

Preliminary Technical & Economic Assessment

Power Performance Assessment

- Basis: Case 12 Supercritical PC Power Plant with CO2 Capture. DOE/NETL-2007/1281.
- Process model of a supercritical PC power plant was developed to estimate parasitic power load and net energy penalty (Aspen Plus)

CO ₂ Capture Process	Gross Power [kWe]	Aux. Power [kWe]	Net Power [kWe]	Net Efficiency [%]	Efficiency Point Loss
No Capture	827,647	42,947	784,700	39.1	-
Fluor Econamine FG+	663,445	117,450	545,995	27.2	11.9
NAS-2	775,913	96,923	678,991	33.9	5.2

- NAS CO₂ capture process has potential to reduce parasitic power load by ~ 50% compared to MEA-based process
- Primarily due to lower quantity and quality of steam required for solvent regeneration
- Potential for significant reduction in increase in cost of electricity

Preliminary Technical and Economic Assessment

Economic Assessment

- Basis: Case 12 Supercritical PC Power Plant with CO₂ Capture. DOE/NETL-2007/1281.
- Assumption: NAS CO₂ capture process has the same capital and operating cost as the Econamine FG+ process

	Case 11 No Capture	Case 12 w/ MEA	Case 12 w/ NAS CO ₂ Capture Process
Net Plant Efficiency (%)	39.1	27.2	33.9
Power Plant Cost (\$x1000)	866,391	1,109,866	1,109,866
Total Plant Cost (\$/kW)	1,574	2,870	2,308
LCOE (mills/kWh)	63.36	115.33	93.58
ICOE (%)	0	82.0	47.7
CO ₂ Avoided Cost (\$/tonne)		74.8	54.1

- NAS CO₂ Capture Process has potential to achieve < 50% ICOE and < \$50/tonne CO₂
- Further reductions are possible with simplified process configuration

Year 1 Major Milestones and Targets

- Identify at least 1 promising solvent system meeting all performance criteria for bench-scale testing in Y2 & Y3
- Preliminary estimates of parasitic power load and COE completed.
 - Reboiler Duty: < 2.5 GJ/tonne CO₂
 - % Increase in COE < 75%

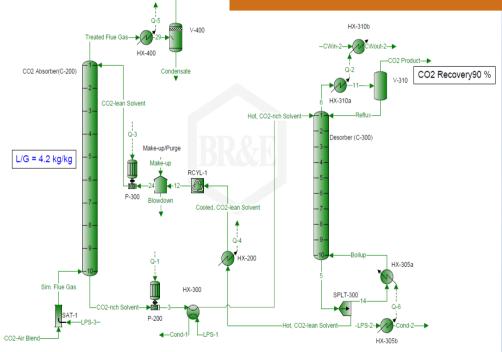
All Y1 milestones and performance targets achieved

Technology Development Plan – Current Efforts

	Previous Work			Previous Work Current Project			Future	uture Development		
Yr	2009-10			201	0-13	2014-15 2016-18			2019+	
TRL	1	2	3	4	5	6	7	8	9	

Year 2 & 3 Major Milestones and Targets

- Bench-scale unit built, commissioned, characterized, and baselined with 30 wt% MEA / water
- Long-term testing (~1,000 h) of promising nonaqueous solvents demonstrating >90% CO₂ capture and reduced thermal regeneration energy requirement
- Collect critical process modeling and scale-up information
- Technical and economic assessments indicating:
 - Reboiler Duty: ≤ 2.0 GJ/tonne CO₂
 - % Increase in COE < 50%


Relevant Environment Validation

- Bench-scale testing to assess solvent performance
- Continued process modeling to evaluate novel process configurations and integration strategies
- Updated, comprehensive technical and economic assessment to compare cost and performance to conventional solvent systems

To Vent

Bench-scale Evaluation of Non-Aqueous Solvent Process

Objective— Assess performance of most-promising NASs in a representation process configuration using high-fidelity flue gas

- Demonstrate >90% CO₂ capture and high CO₂ product purity at an optimal L/G ratio as determined from process modeling
- Compare performance of NASs with that of the SOTA system
- Collect experimental data indicating a 'significant' reduction in energy consumption compared to SOTA
- Long-term (1,000 hours) stability testing
- Collect key process information to support simulation and scale-up efforts

Status

- System design completed and procurement and construction underway
- EDC: Installed at RTI by September 30, 2012

Next Development Phase – Mini-Plant/Slipstream Testing

ARPA-E Portfolio - NETL Portfolio

	Previous Work			Current	Project	roject Future Development			
Yr	2009-10			201	2010-13 2014-15		2016-18	2019+	
TRL	1	2	3	4	5	6	7	8	9

Acknowledgments

The Chemical Company

Mini Plant Testing at Power Plant

